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Abstract

Recent assessments of swordfish, Xiphias gladius, in the north Atlantic Ocean by the International Commission for the

Conservation of Atlantic Tunas (ICCAT) have included fitting a nonequilibrium logistic (Schaefer) surplus-production model.

The logistic model offers simplicity, but concern has been expressed that its fixed model shape may bias estimates of quantities

of management interest. Here, I compare results from the logistic estimator used by ICCAT to those from an otherwise

equivalent generalized (Pella–Tomlinson) production-model estimator. Following initial estimation with nonlinear least-

squares, a resistant fitting method was used to identify statistical outliers, and both models were refit with outliers removed.

The estimate of model shape from the generalized model was then close to the logistic, and estimates of stock status from the

two estimators were similar. A simulation study conditioned on the trimmed generalized fit suggests that any systematic

estimation error caused by assuming logistic shape for this stock is small. Moreover, the generalized estimator was sensitive to

outlying observations and thus less precise than the logistic estimator, and it exhibited larger median proportional unsigned

error. Sensitivity to outliers and lack of precision in an estimator make it more likely to provide misleading estimates in a

given analysis; therefore, if the generalized production model with estimated shape parameter is used in stock assessment, it

should be applied with skepticism and in conjunction with the more robust logistic form. Unless a good external estimate of

model shape is available, the logistic model appears more suitable for routine assessment use on stocks similar to swordfish.

Published by Elsevier Science B.V.
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1. Introduction

Choice of model structure in fishery science (as

elsewhere) is a process of compromise between sim-

plicity and fidelity to the underlying system (e.g. Punt,

1992). This principle extends even to such simple tools

as surplus-production models. In the least complex

surplus-productionmodel, the logistic form of Schaefer

(1954, 1957), the production curve (curveof production

per unit time dB/dt as a function of stock biomass B) is

assumed symmetrical around the biomass BMSY that

can produce maximum sustainable yield (MSY). In the

more complex generalized model (Pella and Tomlin-

son, 1969), the production curvecan be skewed in either

direction (Fig. 1). The generalized model is sometimes

thought more realistic, or at least more adaptable to

possible realities (Pella and Tomlinson, 1969; Quinn
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and Deriso, 1999), while the logistic model offers

greater simplicity (Lotka, 1924; Prager, 1994).

Since introduction of the generalized model, many

authors have noted that estimating its coefficients can

be difficult (Pella and Tomlinson, 1969; Fletcher,

1978; Rivard and Bledsoe, 1978). Hilborn and Walters

(1992) asserted that ‘‘few if any data sets on real fish

populations’’ could support estimation of the shape of

the production curve. They further stated: ‘‘the Pella

and Tomlinson extension of the Schaefer model is a

nice theoretical construct but should be used only with

great care in fisheries stock assessment’’. Despite the

problems attending parameter estimation, the general-

ized model continues to attract interest from assess-

ment biologists, an interest that may be sustained in

part by availability of the computer program PROD-

FIT (Fox, 1975), which fits the generalized model by

equilibrium approximation. However, the equilibrium

approximation and similar methods, although useful

when computational power is lacking, have been

studied repeatedly and have repeatedly drawn strong

criticism (Roff and Fairbairn, 1980; Polacheck and

Hilborn, 1987; Hilborn and Walters, 1992; Polacheck

et al., 1993).

Management of swordfish Xiphias gladius in the

north Atlantic Ocean is coordinated by the International

Commission for the Conservation of Atlantic Tunas

(ICCAT) and conducted by an ICCAT species group,

an international panel of scientists representing broad

expertise on the species and fisheries throughout

its exploited range. In ICCAT’s recent assessments

of the stock, a nonequilibrium version of the logistic

production model, implemented as an observation-

error estimator (Pella and Tomlinson, 1969; Hilborn

and Walters, 1992; Prager, 1994, 1995), has been used

along with other methods, among them age-structured

production models (Hilborn, 1990), Bayesian produc-

tion models (McAllister et al., 2000), and VPA-based

catch-at-age models (Gavaris, 1988), sometimes incor-

porating Monte Carlo simulations to address risk

(Restrepo et al., 1992). Although correct shape of the

production curve has been a matter of discussion,

comparisons of logistic production-model results to

those from an equivalent model with estimated shape

have not been made, perhaps because of the estimation

difficulties mentioned earlier. Some comparison was

made to estimates from the Fox (1975) equilibrium-

approximation procedure. However, in keeping with

recommendations in the literature (Ludwig et al., 1988;

Polacheck et al., 1993; Punt and Hilborn, 1996), this

ICCAT species group has preferred to avoid equilibrium

assumptions and to use observation-error estimators.

Fig. 1. Typical production model shapes (defined by f � BMSY=K) for hypothetical populations with MSY ¼ 250. Left curve, f ¼ 0:3
(equivalent exponent n ¼ 0:68); center curve, f ¼ 0:5 (logistic model, n ¼ 2); right curve, f ¼ 0:7 ðn ¼ 6:04Þ.
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In this study, a direct comparison was made

between equivalent logistic and generalized estima-

tors, both applied to current data on the stock. Each

model was fit through an observation-error estimator

(Pella, 1967; Pella and Tomlinson, 1969; Prager, 1994;

Punt and Hilborn, 1996) under the same statistical

assumptions used by recent ICCAT assessments. The

goal was to weigh the simplicity and relative ease of

estimation provided by the logistic model against the

possibly less biased estimates of the generalized

model, and to reach conclusions applicable to the

stock of swordfish in the north Atlantic Ocean and

to stocks of similar life history and fishing pattern. In

the course of the study, the utility of robust regression

methods (Rousseeuw and Leroy, 1987) in production

modeling was also examined and a simulation was

conducted to better evaluate performance of the two

estimators in this application.

2. Data and basic methods

Data (Table 1) are the estimates of catch and relative

abundance used in ICCAT’s 1999 assessment of this

stock (ICCAT, 2000). Because catch data include only

reported catches, they are considered minimum esti-

mates, and in analysis the proportion of nonreporting

must be assumed constant. Relative abundance is esti-

mated by ICCAT through a linear model applied to

catch and effort data from Canadian, Japanese, Spanish,

and US longline fisheries (Hoey et al., 2000). Data span

the years 1950–1998 with several periods of missing

relative-abundance data near the start of the series.

2.1. Models

The two models used for analysis were the logistic

production model (Lotka, 1924; Schaefer, 1957; Pella,

1967; Schnute, 1977; Prager, 1994) and the general-

ized production model of Pella and Tomlinson (1969)

as restructured by Fletcher (1978). Under the logistic

model, a stock’s dynamics in the absence of fishing are

described by the differential equation:

dBt

dt
¼ rBt �

r

K
B2

t ; (1)

where Bt is the biomass at time t, r the population’s

intrinsic rate of increase, and K the limiting population

Table 1

Data used in production models of swordfish in north Atlantic

Oceana

Year Abundance index Catch

1950 – 3746

1951 – 2781

1952 – 3193

1953 – 3503

1954 – 3134

1955 – 3602

1956 – 3358

1957 – 4578

1958 – 4904

1959 – 6232

1960 – 3828

1961 – 4381

1962 – 5342

1963 1398.86 10,180

1964 501.05 11,258

1965 314.35 8652

1966 293.67 9349

1967 351.31 9107

1968 284.72 9172

1969 258.54 9203

1970 296.39 9495

1971 – 5266

1972 – 4766

1973 – 6074

1974 – 6362

1975 433.51 8839

1976 372.42 6696

1977 392.43 6409

1978 627.49 11,835

1979 355.60 11,937

1980 478.38 13,558

1981 333.95 11,180

1982 385.78 13,215

1983 280.03 14,527

1984 276.91 12,791

1985 266.85 14,383

1986 256.75 18,486

1987 235.11 20,236

1988 232.53 19,513

1989 222.13 17,250

1990 209.34 15,672

1991 217.24 14,937

1992 201.22 15,394

1993 183.19 16,772

1994 166.63 15,235

1995 176.71 16,618

1996 142.68 14,921

1997 147.61 12,913

1998 165.24 12,175

a Abundance index in relative biomass units; catch in tonnes.
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size (carrying capacity). The units of r are time�1

(usually yr�1), while the units of B and K are biomass.

Corresponding dynamics of the generalized model

as restructured by Fletcher (1978) are described by the

differential equation:

dBt

dt
¼ gm

Bt

K
� gm

Bt

K

� �n

; (2)

where m is maximum sustainable yield, also symbo-

lized MSY, with units biomass�time�1; n is a unitless

exponent determining the shape of the production

curve; and g is a function of n:

g ¼ nn=ðn�1Þ

n � 1
: (3)

Equation (2), has a removable singularity at n ¼ 1; at

that value of n, the generalized model is equivalent to

the Fox (1970) exponential yield model.

In the logistic model ðn ¼ 2Þ, parameters of Eqs. (1)

and (2) are related by m ¼ 1
4

rK. Thus Eq. (1) describ-

ing the logistic model can be rewritten as:

dBt

dt
¼ 4m

Bt

K
� 4m

Bt

K

� �2

: (4)

Either model can include fishing by addition of the

term �FtBt to its right-hand side, where Ft is the

instantaneous fishing mortality rate, with units of

time�1.

In this study, shape of the production curve is

characterized by the unitless ratio f � BMSY=K. This

seems more biologically natural than using the expo-

nent n itself. The two are related monotonically by

f ¼ 1

N

� �1=ðn�1Þ
;

where n is the exponent in Eq. (2) (Fletcher, 1978).

The relationship between the two quantities is mark-

edly nonlinear (Fig. 2).

2.2. Fitting methods

The fitting method used for both models was that of

Pella (1967) as revised by Prager (1994), also

described by Quinn and Deriso (1999), and imple-

mented as a generalized version of the computer

program ASPIC (Prager, 1995). The method includes

estimation conditional on observed catch, assuming

lognormal observation error in fishing effort rate ft in

year t. The objective function was least-squares, with

residuals computed as rt ¼ logðftÞ � logðf̂ tÞ; under

the assumptions used, this provides maximum-like-

lihood estimates. When conditioning on catch, such

residuals in f are equivalent to negative residuals in the

abundance index; thus, a residual here has negative

sign when the observed abundance index is higher

than the corresponding modeled value.

Continuous-time versions of both models were

used. The logistic model used the analytical formula-

tion of Prager (1994); the generalized model used a

numerical approximation of the catch equation with

between 24 and 100 steps per year, depending on

estimated rate of change in population size. To con-

dition on catch, the model biomass was projected

forward each year and a corresponding trial value

of Ft adjusted until predicted and observed catches

matched (within some small tolerance), at which point

the trial value was accepted as the model estimate.

Parameter estimates from the logistic model were used

as starting guesses in fitting the generalized model.

All nonlinear optimization algorithms tend to stop

at local minima. Here, the polytope algorithm (Nelder

and Mead, 1965; Wright, 1996) was used for mini-

mization, and to increase the chance of finding a

global minimum, parameter estimates were con-

strained to realistic values and the algorithm was

repeatedly restarted after a minimum was located.

Fig. 2. Relationship between exponent n in generalized production

model and model shape expressed as f � BMSY=K. Singularity at

n ¼ 1 has been removed.
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Monte Carlo searches of the parameter space were

interspersed between restarts in a further attempt to

avoid local minima. Three successive restarts to essen-

tially the same estimates—five restarts when using

least median of squares (described below)—were

required before a set of estimates was accepted.

2.3. Bootstrap

Nonparametric bootstrapping (Efron, 1982; Efron

and Gong, 1982; Stine, 1990) was used to estimate

confidence intervals on quantities of interest by the BC

(bias-corrected percentile) method of Efron (1982).

The major advantages of the bootstrap in this applica-

tion are its flexibility and relative freedom from dis-

tributional assumptions. Usually, bootstrapping is

performed by resampling data observations; however,

in fitting time series, the order of data must be

retained. To preserve ordering, this study used a boot-

strap method that combines the ordered predicted

values from the original fit with residuals chosen at

random from that fit (Efron and Tibshirani, 1986).

Such bootstrap results are conditional on validity of

the original fit.

2.4. Simulation

A simulation study was conducted to further com-

pare accuracy and precision of the two estimators in a

management context. The advantage of such a study is

that estimates can be compared directly to the simu-

lated ‘‘truth’’.

Simulations were based on the estimated stock

trajectory from a trimmed generalized fit, described

in Section 3.3. Simulated data sets were constructed

using recorded data on catch, but replacing observed

abundance-index values with estimates from that fit.

Missing abundance-index values in the real data were

treated as missing in the simulations. In each data set,

simulated lognormal observation error was added to

the abundance index. A total of 600 such data sets were

generated, including 200 series of observation error at

each of three coefficients of variation (CVs): 2, 10, and

25%. The first of these represents an almost ideal case,

unattainable in an actual assessment. The final case was

a guess at the magnitude of variability in real data. The

remaining case was used to provide an intermediate

value that might help reveal patterns in results.

Logistic and generalized models were fit to each

simulated data set, and estimates of management-

related quantities were recorded for each trial; i.e.,

estimates of MSY; relative fishing mortality rate in

the final year of data, F./FMSY; and relative stock

biomass after the final year, B./BMSY. Estimates of

model shape f from the generalized fits were also

recorded.

Choice between models is often based on a statis-

tical test. To examine the usefulness of that procedure

in production-model choice, an F-ratio test was con-

ducted comparing logistic and generalized fits of each

simulated data set (under H0:f ¼ 0:5) and signifi-

cance probability of each test was recorded.

Analysis of simulation results focused on estima-

tion accuracy and precision, presented both through

box–whisker plots for all combinations of CV and

model shape and through statistics on simulations with

25% observation error, thought to be the most realistic

of the levels simulated. Two statistics based on med-

ians were computed, as more resistant to outliers than

the usual statistics based on means.

To express accuracy of estimates, I computed med-

ian proportional error (MPE). For estimated quantity x

with true value x� and a set of estimates x̂n; n ¼
f1; . . . ;Ng, MPE was computed

MPEðxÞ ¼ medianN
n¼1

x̂n � x�

x�
: (5)

Thus MPE is a resistant statistic similar to propor-

tional bias, and one might expect an estimator with

very low MPE to produce estimates above the true

value about half the time and below it half the time.

Root-mean-squared error (RMSE; Kotz and John-

son, 1988) is a widely used measure of estimation

merit that accounts for both accuracy and precision.

For a set of N estimates of x as above, it is computed

RMSEðxÞ ¼
PN

n¼1ðx̂n � x�Þ2=N
� �1=2

. An analogous

measure, but more resistant and expressed scaled to

the true value, is median proportional unsigned error

(MPUE), defined here as

MPUEðxÞ ¼ medianN
n¼1

x̂n � x�

x�

����
����: (6)

The interpretation is that, on similar data, estimation

error without respect to sign should be worse than

MPUE about 50% of the time.
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3. Application to data on swordfish

3.1. Nonlinear least-squares fitting

Initially, both models were fit to the ICCAT data set

(Table 1) using the estimators described earlier with

standard nonlinear least-squares (NLLS) as the objec-

tive function. Initial stock biomass was fixed at

0.875 K (ICCAT, 2000), a value believed to approx-

imate the lightly exploited stock of 1950. Fixing the

initial biomass in this way can increase estimation

precision, possibly at the cost of some bias (Punt,

1990). Standard NLLS gave similar estimates of MSY,

but widely different estimates of stock status, between

models (Fig. 3a and b; Table 2), with estimates from

the generalized model being more optimistic than

estimates from the logistic model and also more

optimistic than recent assessments of the stock

(ICCAT, 2000). Two troubling aspects of the initial

results were the large differences in estimates between

models and the poor precision of estimates from each

model (Table 2).

Further examination of results, prompted by the

preceding issues, revealed several large residuals,

the largest of which was associated with an extreme

abundance-index value at the start of the series in 1963

(Fig. 3c and d). That value is questionable on purely

biological grounds: If the value accurately represents

relative abundance, the stock declined by about 65%

from 1963 to 1964 and 77.5% from 1963 to 1965.

Given the general life history of swordfish, which is

characterized by only moderately variable recruitment

and well-developed age structure even under exploita-

tion, and the moderate level of fishing at the time, such

a decline seems unlikely. The alternative is that the

abundance index in 1963 did not represent true relative

abundance. That could be the case, even if the index

was correctly based on catch per effort in the fishery, if

catchability in 1963 was higher than in following years,

perhaps due to an unknown factor related to initiation

of the longline fishery.

3.2. Outlier detection via resistant fitting

Given the concerns listed above, and because the

1963 abundance-index value seemed questionable at

best, further analyses were done, starting with appli-

cation of an objective method for identifying statis-

tical outliers. The strategy described by Rousseeuw

and Leroy (1987) for outlier detection comprises (1)

use of a resistant fitting method to increase residuals of

points not fitting the data–model combination well, (2)

labeling as outliers points with the most extreme

residuals, coupled with examination of outliers on

substantive grounds, and (3) refitting the model with

such outliers removed. Applications of this sequence

in fisheries were given by Restrepo and Powers

(1997).

The resistant fitting method used here was least

median of squares (LMSs), which is resistant to 50%

contamination of data by outliers. The method,

described in detail by Rousseeuw and Leroy (1987),

differs from standard NLLS only in that the quantity

minimized is the median of squared residuals rather

than the sum of squared residuals. The method has

been advocated in fisheries problems by Chen and

Paloheimo (1994); a similar method was used by

Restrepo and Powers (1997).

Following application of LMS, all residuals were

scaled by the two-stage resistant procedure of Rous-

seeuw and Leroy (1987; Chapter 5). In the first stage of

that procedure, an initial scale estimate s0 is computed

from the minimal median residual and a finite-sample

correction factor:

s0 ¼ 1:4826
1 þ 5

N � p

� � ffiffiffiffi
~r2

p
;

where N is the sample size, p the number of parameters

estimated, and ~r2 the median squared residual from the

LMS fit. In computing the final scale estimate s�, only

the N� residuals are used for which jr=s0j � x, where x
is determined by the desired tolerance for outlying

data. The final scale estimator computed from such

residuals is

s� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�
r2

N� � p

s
;

which is essentially a trimmed estimate of model

standard error.

Given the final scale estimator s� and the value of x
set by the investigator, outliers are defined as points

with jr=s�j > x. Rousseeuw and Leroy (1987) suggest

x ¼ 2:5. However, fishery data are inherently more

variable than most experimental data, so the value
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Fig. 3. Initial production model results for swordfish in north Atlantic Ocean. Panels (a) and (b), trajectories of relative biomass and fishing

mortality rate estimated from logistic and generalized models, respectively, by NLLS; (c) and (d), observed (circles) and estimated (lines)

abundance index for corresponding model fits, with filled symbols marking values designated as outliers in subsequent resistant (LMS) fits of

same models; (e) and (f), standardized residual plots from resistant fits of same models, with dotted lines dividing outliers from other values.
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x ¼ 3:29 was adopted here; that value defines a two-

sided tail probability of 0.001 in a standard normal

distribution.

Statistical outliers were identified in both models in

accordance with the preceding procedure and LMS

fitting. In the logistic model, two outliers were iden-

tified: data for 1963 and 1978, with scaled residuals

(r/s�) of�10.26 and�4.56, respectively (Fig. 3c and e).

In the generalized model, four outliers were identified:

1963, 1964, 1978, and 1980, with scaled residuals

of �12.93, �4.03, �6.59, and �4.59, respectively

(Fig. 3d and f).

3.3. Trimmed estimates

Both models were refit after eliminating the outliers

identified above. In doing this, outlying values of the

abundance index were treated as missing data, but

corresponding data on catch were retained. Thus,

slightly different sets of data were used in fitting

the two models, the logistic model admitting 2 more

years of relative-abundance data than the generalized

model. Following Restrepo and Powers (1997), I refer

to the final fitting procedure as trimmed nonlinear

least-squares, or TNLLS, and to estimates from this

procedure as trimmed estimates.

The TNLLS procedure provided much better fit

between model and data, as would be expected when

outliers are removed. Estimated precision of corre-

sponding trimmed estimates was also better (Table 2,

Fig. 4).

Trimmed logistic estimates were similar to the

original logistic estimates, although the trimmed esti-

mates were slightly more optimistic about stock status

and considerably more precise. Trimmed generalized

estimates were quite different from the original NLLS

generalized estimates, but were closer to both sets of

logistic estimates. Estimates of MSY were less

affected by removal of outliers than estimates of other

quantities (Table 2).

Both logistic and generalized trimmed estimates

describe the stock as somewhat depleted, with B1999

at about 70% of BMSY and F1998 at about 125% of

FMSY. Measures of stock status are expressed relative

to benchmarks to increase precision by cancellation of

estimated catchability q̂ and because the ratios are of

interest to management (Prager, 1994). Both models

estimate that if the stock were fished at FMSY in 1999,

the yield would be about 9900 t, considerably less than

recent catches. A constant-effort policy based in FMSY

is the upper limiting case of recent US technical

guidelines (Restrepo et al., 1998), and is used here

Table 2

Goodness-of-fit of and estimates from production models of swordfish in north Atlantic Oceana

Model shape Nonlinear least-squares Trimmed least-squares

Logisticb Generalized Logisticb Generalized

R2 in abundance index (%) 28.9 33.9 72.6 82.3

MSY 14,070 14,510 13,750 14,040

7320–16,160 5924–15,800 8940–15,310 10,370–15,940

f � BMSY=K 0.500 0.256 0.500 0.545

– 0.153–0.287 – 0.336–0.627

B1999/BMSY 0.635 1.22 0.719 0.709

0.503–0.999 0.966–2.33 0.622–0.882 0.589–0.921

F1998/FMSY 1.36 0.707 1.24 1.23

0.784–2.08 0.292–0.902 0.962–1.82 1.03–1.72

Y1999 at FMSY 8937 17,690 9880 9956

5566–16,270 13,960–39,440 6576–13,230 6934–12,120

a Trimmed fits are with 2 years’ data dropped (logistic model) or 4 years’ data dropped (generalized) as statistical outliers. Bootstrapped

80% confidence intervals given below estimates. Values of R2 reflect differing sample sizes among models due to outlier removal, and are thus

not strictly comparable.
b Model shape parameter f ¼ 0:5 by definition for logistic model.

48 M.H. Prager / Fisheries Research 58 (2002) 41–57



to represent the class of constant-effort harvesting

policies.

4. Simulation results

Results of the simulation are presented both gra-

phically (for all values of simulated observation error)

and in tabular form (for 25% CV of observation error

only), to provide complementary views of estimation

performance. The graphical presentation (Fig. 5) gives

estimation errors in the original units, while tabulated

statistics (Table 3) are expressed as percentages of true

values. Because all 600 data sets had the same true

values of management quantities, patterns of errors are

independent of that difference in scaling.

Not all 600 simulated data sets are included in these

results, as it was not possible to obtain estimates from

every data set. At 2% error, all fits were successful; at

10% error, all logistic fits were successful, but two

generalized fits hit bounds on f̂; at 25% error, there

were 11 failures to reach convergence on the logistic

model and 50 failures on the generalized model (11

trials abandoned when the simpler logistic fit failed

and 39 bounds hits on f̂). Thus, it was not possible to

fit the generalized model in 25% of cases with the

highest level of observation error, and it was not

possible to fit the logistic in about 5% of such cases.

Fig. 4. Final production model results for swordfish in north Atlantic Ocean. Panels (a) and (b), trajectories of relative biomass and fishing

mortality rate estimated from logistic and generalized models, respectively, by trimmed nonlinear least-squares; (c) and (d), corresponding

observed (circles) and estimated (lines) abundance indices.
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Fig. 5. Distributions of logistic (left; center) and generalized (right) production model estimates from analyses of simulated data. Simulated

data were based on trimmed generalized production-model fit of real data on swordfish in north Atlantic Ocean, following outlier detection and

removal. Simulated observation error added at three levels, CV 2 f2; 10; 25%g. Dashed lines are ‘‘true’’ values used in simulation. Box–

whisker plots depict median (filled circle), interquartile range (box), general data range (whiskers), and extreme observations (open circles).

Table 3

Performance of logistic and generalized production-model estimators applied to simulated data resembling swordfish in north Atlantic Oceana

Estimated quantity MPE (%) MPUE (%)

Logistic (1) Generalized (2) Logistic (3) Generalized (4)

MSY 0.0 5.8 7.8 13.5

B1999/BMSY 8.4 5.8 14.1 19.5

F1998/FMSY �5.5 �6.6 19.9 20.0

a Results shown for 150 simulations with 25% observation error in which generalized estimator converged on a solution. MPE is a

statistically resistant analog of proportional bias; MPUE, a resistant analog of proportional RMSE (see Section 2.4 for definitions).
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Median estimation error in MSY was comparable

between estimators at all levels of observation error

(heavy black dots in top three panels of Fig. 5), with

the logistic estimator performing slightly better on

data with 25% CV (Table 3), and the generalized

estimator performing slightly better at lower levels

of observation error. When considering only the subset

of results in which both estimators were successful

estimates of MSY from the logistic estimator were

considerably more precise, as judged by extent of the

central boxes and whiskers in Fig. 5. Even when all

successful logistic estimates are compared to the lower

number of successful generalized estimates, the logis-

tic estimator appears more precise.

Of the three management quantities considered,

increased estimation precision from the logistic esti-

mator was most pronounced in B./BMSY. Logistic

estimates of this quantity were slightly less accurate,

but considerably more precise, than generalized esti-

mates, particularly at the 25% level of observation

error (Fig. 5, Table 3).

Median estimation error in F./FMSY was compar-

able from the two estimators. Logistic estimates of

F./FMSY were slightly more precise than correspond-

ing generalized estimates (Fig. 5), especially at 25%

observation error (Table 3). Estimation of this quantity

appears relatively insensitive to the choice of estima-

tor.

Estimation of model shape f was imprecise at the

10 and 25% levels of observation error, with no

estimates obtained at f̂ < 0:25 or f̂ > 0:75 because

of bounds set on f̂ to facilitate estimation (Fig. 6). In

some noisy data sets, model fit is optimized by

increasing or decreasing f̂ without limit; estimates

at either bound were thus discarded as invalid. This is

not meant to imply that in some species the true value

of f might not fall outside these limits.

Estimates of f were correlated with estimates of

other quantities (Fig. 7). Estimates of MSY tended to

increase with increasing f̂, as did estimates of F./FMSY.

Estimates of B./BMSY were strongly negatively corre-

lated with f̂ and the strength of that correlation may

explain the relatively high dispersion noted above in

estimates of B./BMSY.

MPUE was computed as a robust measure of esti-

mation merit reflecting both accuracy and precision.

Results favor the logistic model, which produced

lower MPUE in MSY and B./BMSY; the two models

produced essentially the same MPUE in F./FMSY

(Table 3).

Fig. 6. Distribution of estimates of model shape f � BMSY=K from 600 simulated data sets patterned on swordfish in north Atlantic ocean;

shown by CVof simulated lognormal observation error. Dashed line is ‘‘true’’ value of f used in simulation; dotted lines are constraints placed

on f̂ to facilitate estimation. Box–whisker plots depict median (filled circle), interquartile range (box), general data range (whiskers), and

extreme observations (open circles).
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4.1. Use of statistical tests for model choice

The significance probability (P) of an F-ratio test

was not particularly informative for choosing model

results with better management estimates. The lowest

estimated P values consistently occurred when f̂ was

furthest from the null value of 0.5 (Fig. 7). With true

model shape f ¼ 0:55 in the simulated populations,

Fig. 7. Correlations among estimated quantities in simulations based on swordfish in north Atlantic Ocean. Estimates are from generalized

production model fits of 150 data sets based on one underlying population trajectory with different realizations of simulated lognormal

observation error at 25% CV. Five cases with estimated F:=FMSY > 2:5 are off scale; MSY divided by 1000 for plotting. ‘‘F-prob’’ is

significance probability of an F-ratio test of H0:f ¼ 0:5.
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the most statistically significant results (smallest

values of P) were estimates of management quantities

at extreme values (Fig. 7).

Significance tests were conducted at a ¼ 0:1 for the

600 simulations. As the CVof observation error in the

simulated data was increased to levels believed rea-

listic, the test became less useful. At 2% error, the test

tended to choose model estimates approximately cen-

tered around the correct value of MSY (Fig. 8a).

However, at 10% observation error, significant test

results were most common at estimates of MSY about

2000 t yr�1 higher than the true (simulated) value of

about 14,000 t yr�1 (Fig. 8b and c). The few signifi-

cant test results at 25% observation error were

located even further from the correct value of MSY

(Fig. 8d).

5. Discussion

The goal of this methodological study was to

examine relative strengths and weaknesses of logistic

Fig. 8. Use of F-ratio test to choose between logistic production model ðf � 0:5Þ and generalized model (f estimated). Significance

probabilities P for tests of H0:f ¼ 0:5 on simulated data with true f ¼ 0:55. Panels (a), (b), and (d): relationship of P to error in estimate of

MSY from data with simulated observation error at three levels. Small crosses mark cases not significant at P < 0:1, larger circles mark

significant cases. Panel (c): empirical probability density of error in MSY estimates for significant cases in panel (b).
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and generalized production models in assessment of

this stock. A secondary goal was exploring the utility

of robust regression in treatment of apparent outliers

in the data. (Although this study also resulted in

estimates of stock status, the author does not con-

sider them to supersede the usual assessments of this

stock, which include varied analyses and extensive

synthesis by an international panel of specialists.)

Several insights have been gained in this investiga-

tion.

5.1. Longline-based abundance indices

As noted by Au (1986), abundance indices derived

from longline fishery data tend to show a marked

decline in the first few years of fishing, a decline that

far exceeds the expected effects of fishing. In the

longline-based index for north Atlantic swordfish, a

decline of 77.5% occurs between 1963 and 1965,

when catches were below estimated MSY levels

(Tables 1 and 2) and estimates of fishing mortality

rate were below FMSY (panels a and b of Figs. 3 and 4).

Although some reduction of the stock certainly

occurred, it seems unlikely that the magnitude of

the index decline was matched by a proportional

decline in stock biomass. A general alternative to

proportionality is that catchability in the first few

years of a longline fishery tends to be unusually high.

To my knowledge, a definitive explanation of that

phenomenon has not been developed; a hypothesis

due to J. Radovich is that initial crowding may cause

an increased tendency to take the hook (A.D. MacCall,

pers. comm.). Because fishery management often

attempts to restore depleted stocks to some fraction

of their initial condition, early data from fisheries are

particularly critical, yet we do not always understand

the meaning of initial observations in such time series.

Here, a high initial value was rejected as a statistical

outlier, an approach that highlights the problem but

does not overcome it. A valid quantitative model of the

elevated catch per effort observed in the first few years

of longline fisheries would constitute an important

theoretical advance in assessment and management of

stocks taken on longlines. Unfortunately, as more and

more time elapses since the observation of those

conditions, it seems increasingly difficult to study

the problem, at least in a way that might allow field

verification.

5.2. Resistant fitting methods

Resistant fitting methods were found useful here to

identify outliers. Because it was not possible to correct

or adjust the outliers, they were eliminated from the

analysis. Whether resulting estimates were more or

less biased than those including the outliers cannot be

determined, and would seem to depend on the

unknown mechanism generating the outliers. In gen-

eral, it seems preferable to use resistant fitting to

identify and correct outliers if possible rather than

simply to discount them (as would be done if the

resistant fit itself were used for estimation) or elim-

inate them (as was done here). It also seems that

resistant methods would best be used in fishery man-

agement in conjunction with some form of sensitivity

analysis; i.e., fits with and without suspected outliers

will ideally be examined as to precision and bias

of results. Here, resistant methods gave appreciably

more precise estimates; it seems worth investigating

whether such methods might also reduce the variation

in estimates over time (from one assessment to the

next).

5.3. Shape of the production curve

The true shape of the production curve for this

stock is unknown. Although the shape was esti-

mated, its sensitivity to observation error in the data

(Fig. 6) implies that the estimate is provisional at

best. At least two authors have attempted to estimate

f for swordfish from demographic considerations in

accordance with theory advanced by Fowler (1981,

1988). Garcia-Saez (1997) applied age- and stage-

structured matrix models with harvesting and

arrived at the range 0:68 � f̂ � 0:97 when consid-

ering total stock biomass, and 0:59 � f̂ � 0:65

when considering reproductive (mature) biomass.

The author concluded that ‘‘Growth rates calculated

here imply that not more than 40% of the population

could sustainably be harvested (inflection point of

0.6 K). . .’’. In a Bayesian analysis based on a

modified generalized production model, McAllister

et al. (2000) established a joint prior distribution on

the intrinsic rate of increase r and the shape

expressed as an exponent, as in Eq. (2). That prior

distribution was developed from the empirical rela-

tionship of Fowler (1988); the prior median estimate
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was f̂ ¼ 0:43, and the posterior distribution was

centered at f̂ ¼ 0:4.

Neither of the preceding estimates is conclusive.

Each is grounded in quantitative theory but necessarily

involves many assumptions. For example, specific

forms of stock–recruitment relationship were

assumed, and specific forms of other demographic

functions were used, generally based on studies at a

limited range of population sizes. In this study, the

TNLLS 80% confidence interval on f̂ (Table 2)

encompasses both the central estimates of McAllister

et al. (2000) and most of the range of estimates of

Garcia-Saez (1997) based on mature biomass, but

does not include the latter’s higher estimates based

on total biomass.

The assumption f ¼ 0:5, which results in the logis-

tic model, was used by Lotka (1924) not for biological

realism but as a central approximation possessing

mathematical and conceptual simplicity. Thompson

(1992) found through algebraic manipulation that

under simple dynamic pool models with nondecreas-

ing stock–recruitment relationships (such as the Bev-

erton and Holt (1957) model), it is always true that

f < 0:5. That seems to set an upper limit on f for

stocks meeting the specified assumptions, but a lower

limit can also be proposed based on properties of the

generalized model itself. In the generalized model

with n � 1, equivalent to f/ 0:37, a positive (and

substantial) sustainable yield is available even as F

approaches infinity, because the stock’s rate of

increase becomes infinite as the stock size goes to

zero. Clearly, that property is not exhibited by real fish

stocks, which often exhibit reduced productivity at

low stock levels. To eliminate that model property,

McAllister et al. (2000) advocated a hybrid of the

Fletcher (1978) formulation and the logistic model, an

approach that provides flexible model shape while

avoiding an infinite rate of increase. Another approach

would be to impose on the generalized model (Eq. (2))

the constraint f > 0:37.

Thus, two closely related issues exist about estimat-

ing the shape of the production curve externally (to a

production model), whether the goal is point estima-

tion of f or estimation of a prior distribution for a

Bayesian approach. The first issue is determining an

estimation procedure for a given population, i.e.,

choosing the models and assumptions to be used.

For swordfish, broader study of that problem is

required, including study of sensitivity to changes

in assumptions. The second issue is that all general-

izations about allowable or probable values of f are

rooted in specific models. The degree to which those

models are representative of real fish stocks for this

purpose is unknown.

5.4. Choices for assessment work

What can be said about appropriate choice of

estimators when the goal is conducting an assessment

for management? Some data sets are insufficiently

informative to estimate f and, as has been seen, when

f can be estimated, it may be difficult to have con-

fidence in the results. When evaluated on the swordfish

data (real and simulated), the generalized model with

estimated exponent was quite sensitive to outliers; the

logistic model was much less sensitive. For that

reason, the logistic production model can be recom-

mended as a central approximation that will likely

provide more precise and stable estimates, or provide

estimates when none can be obtained from the gen-

eralized model. In addition, the logistic model may be

superior (as here) to the generalized model in terms of

MPUE, a measure considering both accuracy and

precision.

Given the range of previous estimates of f for

swordfish in the north Atlantic Ocean, I believe the

simulation results in this paper are applicable to that

stock. The present results, obtained on a production

curve skewed slightly to the left, suggest that the

logistic may also outperform the generalized estimator

on production curves in the neighborhood of the

logistic, including curves skewed slightly to the right.

It would require more extensive simulations to estab-

lish that supposition conclusively and to establish

whether the superior performance of the logistic esti-

mator applies across the range of plausible shapes of

production curve for all species.

In general, it seems likely that better estimates

could be obtained from the generalized model by

specifying a priori the correct value of f. The diffi-

culty, of course, is knowing the correct value of f. As

noted earlier, more research on that topic is needed,

both on theory and specifically on swordfish.

As noted above, the F-ratio test may not be useful at

choosing the model form with better management

estimates; here, it tended to choose the generalized
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model only when f̂ was furthest from the null value of

0.5. I would expect other test statistics based on

goodness of fit (e.g., Akaike, 1974; Schwarz, 1978)

to behave similarly: when comparing logistic and

generalized models, large increases in goodness of

fit will occur most often when the generalized estimate

of f is most different from the logistic assumption

f ¼ 0:5. Because, as noted earlier, estimates of f can

be quite imprecise and sensitive to observation error

(Fig. 6), statistical tests may prove of very limited

utility in choosing between these two models. The

simulation study here was a relatively difficult test of

utility, as the true model shape was close to the

logistic, and significance tests may perform better

when the true shape is farther from the logistic. Such

tests are used only when the true shape is unknown,

however, so that consideration may ultimately be

unimportant. Until more extensive studies have been

made of the utility of significance tests in this context,

I recommend that they be considered unreliable.

The difficulty in fitting the generalized model (with

estimated shape) has often been cast as a technical

problem of overly correlated parameters or difficulty

in obtaining convergence from a nonlinear optimiza-

tion algorithm. Even when the data do sufficiently

define the shape of the production curve, technical

difficulties in estimating that shape can be substantial.

Nonetheless, this study has led to a different conclu-

sion, that the underlying problem with the generalized

model is structural: the model is extremely sensitive to

outliers. Fishery data sets tend to be short, noisy, time

series; estimates of f are quite sensitive to noise;

estimates of management quantities propagate that

sensitivity. Thus, the problem with the generalized

model is more fundamental than it is technical, it is

intertwined with the noisy nature of fishery data, and

the warning of Hilborn and Walters (1992) cited in

Section 1 seems quite correct.

In the simulation study, estimates from the general-

ized model were found of comparable accuracy to

those from the logistic model, but the generalized

model was quite sensitive to outlying observations

and characterized by higher MPUE. Because wider

dispersion in estimators can lead to misleading para-

meter estimates in practice, I conclude that if the

generalized production model with estimated shape

is used in swordfish management, it should be used

with skepticism and only in conjunction with the more

robust logistic form. It also seems useful to establish

formal procedures for analysis of statistical outliers

and to examine sensitivity of estimates to assumptions

made about model shape.
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